calcoloscientifico:userguide:alphafold
Questa è una vecchia versione del documento!
Alphafold
Alphafold3
Alphafold3 Apptainer File Image
Alphafold3 Apptainer File Image:
/hpc/share/containers/apptainer/alphafold/3.0.1/alphafold-3.0.1.sif
Alphafold3 GPU job
Download the Alphafold3 input file fold_input.json
and save it in af_input
folder:
- fold_input.json
{ "name": "2PV7", "sequences": [ { "protein": { "id": ["A", "B"], "sequence": "GMRESYANENQFGFKTINSDIHKIVIVGGYGKLGGLFARYLRASGYPISILDREDWAVAESILANADVVIVSVPINLTLETIERLKPYLTENMLLADLTSVKREPLAKMLEVHTGAVLGLHPMFGADIASMAKQVVVRCDGRFPERYEWLLEQIQIWGAKIYQTNATEHDHNMTYIQALRHFSTFANGLHLSKQPINLANLLALSSPIYRLELAMIGRLFAQDAELYADIIMDKSENLAVIETLKQTYDEALTFFENNDRQGFIDAFHKVRDWFGDYSEQFLKESRQLLQQANDLKQG" } } ], "modelSeeds": [1], "dialect": "alphafold3", "version": 1 }
Script slurm-alphafold.sh
to run alphafold
on 1 node with 1 GPU (8 tasks per node):
- slurm-alphafold.sh
#!/bin/bash --login #SBATCH --job-name=alphafold #SBATCH --output=af_output/%x.d%j/%x.o%j #SBATCH --error=af_output/%x.d%j/%x.e%j #SBATCH --nodes=1 #SBATCH --ntasks-per-node=1 #SBATCH --cpus-per-task=8 #SBATCH --time=0-02:00:00 #SBATCH --mem=10G #SBATCH --partition=gpu #SBATCH --qos=gpu #SBATCH --gres=gpu:a100_40g:1 ##SBATCH --account=<account> shopt -q login_shell || exit 1 test -n "$SLURM_NODELIST" || exit 1 test $SLURM_NNODES -eq 1 || exit 1 module load apptainer module load alphafold/3.0.1 test -n "$ALPHAFOLD_CONTAINER" || exit 1 ALPHAFOLD_N_CPU=$SLURM_CPUS_PER_TASK ALPHAFOLD_INPUT_DIR="$PWD/af_input" ALPHAFOLD_OUTPUT_DIR="$PWD/af_output/${SLURM_JOB_NAME}.d${SLURM_JOB_ID}" ALPHAFOLD_MODEL_DIR="$(dirname "$ALPHAFOLD_CONTAINER")/models" ALPHAFOLD_DB_DIR='/hpc/share/databases/alphafold/3' mkdir -p "$ALPHAFOLD_OUTPUT_DIR" apptainer exec \ --bind '/opt/hpc/system/nvidia/driver:/usr/local/nvidia/bin' \ --bind '/opt/hpc/system/nvidia/driver:/usr/local/nvidia/lib' \ --bind "$ALPHAFOLD_INPUT_DIR:/root/af_input" \ --bind "$ALPHAFOLD_OUTPUT_DIR:/root/af_output" \ --bind "$ALPHAFOLD_MODEL_DIR:/root/models" \ --bind "$ALPHAFOLD_DB_DIR:/root/public_databases" \ "$ALPHAFOLD_CONTAINER" \ python /app/alphafold/run_alphafold.py \ --json_path=/root/af_input/fold_input.json \ --model_dir=/root/models \ --db_dir=/root/public_databases \ --pdb_database_path=/root/public_databases/mmcif_files \ --output_dir=/root/af_output \ --jackhmmer_n_cpu=$ALPHAFOLD_N_CPU \ --nhmmer_n_cpu=$ALPHAFOLD_N_CPU
The processing result will be saved in the af output
folder.
calcoloscientifico/userguide/alphafold.1737656760.txt.gz · Ultima modifica: 23/01/2025 19:26 da fabio.spataro