Strumenti Utente

Strumenti Sito


calcoloscientifico:userguide:alphafold

Differenze

Queste sono le differenze tra la revisione selezionata e la versione attuale della pagina.

Link a questa pagina di confronto

Entrambe le parti precedenti la revisioneRevisione precedente
Prossima revisione
Revisione precedente
calcoloscientifico:userguide:alphafold [28/01/2025 16:46] fabio.spatarocalcoloscientifico:userguide:alphafold [06/02/2025 19:46] (versione attuale) fabio.spataro
Linea 19: Linea 19:
 <code> <code>
 mkdir -p demo/af_input mkdir -p demo/af_input
-cp -p /hpc/share/containers/apptainer/alphafold/3.0.1/slurm-alphafold.sh demo +cp -p /hpc/share/containers/apptainer/alphafold/3/af_input/fold_input.json demo/af_input 
-cp -p /hpc/share/containers/apptainer/alphafold/3.0.1/af_input/fold_input.json demo/af_input+cp -p /hpc/share/containers/apptainer/alphafold/3.0.1/slurm-alphafold-gpu-a100_40g.sh demo
 cd demo cd demo
-sbatch slurm-alphafold.sh+sbatch slurm-alphafold-gpu-a100_40g.sh
 </code> </code>
  
Linea 46: Linea 46:
 </code> </code>
  
-Script ''slurm-alphafold.sh'' to run ''alphafold'' on 1 node with 1 GPU (8 tasks per node):+Script ''slurm-alphafold-gpu-a100_40g.sh'' to run ''alphafold'' on 1 node with 1 A100 (40 GB) GPU (8 tasks per node):
  
-<code bash slurm-alphafold.sh>+<code bash slurm-alphafold-gpu-a100_40g.sh>
 #!/bin/bash --login #!/bin/bash --login
 #SBATCH --job-name=alphafold #SBATCH --job-name=alphafold
Linea 94: Linea 94:
  
 The processing result will be saved in the ''af output'' folder. The processing result will be saved in the ''af output'' folder.
 +
 +Scripts for specific NVIDIA GPU models to run ''alphafold'' on 1 node with 1 GPU (8 tasks per node):
 +
 +^ GPU  ^ Path  ^
 +| NVIDIA [[https://github.com/google-deepmind/alphafold3/blob/main/docs/performance.md#nvidia-p100|P100 (12 GB)]]  | ''/hpc/share/containers/apptainer/alphafold/3.0.1/slurm-alphafold-gpu-p100.sh''  |
 +| NVIDIA [[https://github.com/google-deepmind/alphafold3/blob/main/docs/performance.md#nvidia-v100|V100 (32 GB)]]  | ''/hpc/share/containers/apptainer/alphafold/3.0.1/slurm-alphafold-gpu_guest-v100_hylab.sh''  |
 +| NVIDIA [[https://github.com/google-deepmind/alphafold3/blob/main/docs/performance.md#nvidia-a100-40-gb|A100 (40 GB)]]  | ''/hpc/share/containers/apptainer/alphafold/3.0.1/slurm-alphafold-gpu-a100_40g.sh''  |
 +| NVIDIA [[https://github.com/google-deepmind/alphafold3/blob/main/docs/performance.md#accelerator-hardware-requirements|A100 (80 GB)]]  | ''/hpc/share/containers/apptainer/alphafold/3.0.1/slurm-alphafold-gpu-a100_80g.sh''  |
  
 === Documentation ===  === Documentation === 
Linea 130: Linea 138:
   --db_dir: Path to the directory containing the databases. Can be specified multiple times to search multiple directories in order.;   --db_dir: Path to the directory containing the databases. Can be specified multiple times to search multiple directories in order.;
     repeat this option to specify a list of values     repeat this option to specify a list of values
-    (default: "['/home/sti_calcolo/public_databases']")+    (default: "['/hpc/home/sti_calcolo/public_databases']")
   --flash_attention_implementation: <triton|cudnn|xla>: Flash attention implementation to use. 'triton' and 'cudnn' uses a Triton and cuDNN flash attention   --flash_attention_implementation: <triton|cudnn|xla>: Flash attention implementation to use. 'triton' and 'cudnn' uses a Triton and cuDNN flash attention
     implementation, respectively. The Triton kernel is fastest and has been tested more thoroughly. The Triton and cuDNN kernels require Ampere GPUs or later.     implementation, respectively. The Triton kernel is fastest and has been tested more thoroughly. The Triton and cuDNN kernels require Ampere GPUs or later.
Linea 158: Linea 166:
     (default: '${DB_DIR}/mgy_clusters_2022_05.fa')     (default: '${DB_DIR}/mgy_clusters_2022_05.fa')
   --model_dir: Path to the model to use for inference.   --model_dir: Path to the model to use for inference.
-    (default: '/home/sti_calcolo/models')+    (default: '/hpc/home/sti_calcolo/models')
   --nhmmer_binary_path: Path to the Nhmmer binary.   --nhmmer_binary_path: Path to the Nhmmer binary.
     (default: '/hmmer/bin/nhmmer')     (default: '/hmmer/bin/nhmmer')
calcoloscientifico/userguide/alphafold.1738079177.txt.gz · Ultima modifica: 28/01/2025 16:46 da fabio.spataro

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki